\qquad
\qquad

C U SHAH UNIVERSITY

Faculty of Technology and Engineering
M.TECH. MECH.(CAD/CAM) SEM.-II UNIVERSITY EXAM MAY 2015
Subject Code: 5TE02AOT1
Subject Name: ADVANCED OPTIMIZATON TECHNIQUES
Time: 3 hrs
Total Marks: 70
Instructions:

1. Make suitable assumptions whenever necessary.
2. Figures to the right indicate full marks.
3. Question one \& four is compulsory.
```
Section -I
```

Q-1 Attempt the following.

1. What is Engineering optimization? 01
2. What is the difference between design variables and preassigned parameters? 02
3. Find the point of extrema of the function $f(x, y)=x^{2}-y^{2} 02$
4. Differentiate between: Posynomial and Polynomial 02

Q-2 (a) State the necessary and sufficient condition for the minimum of a convex 04 programming problem with inequality constraints. What it its significance?
(b) Determine the maximum and minimum values of the function $f(x)=8 x^{5}-15 x^{4}+10 x$
(c) The efficiency of a screw jack is given by $\eta=\tan \alpha / \tan (\alpha+\Phi)$, where Φ is a constant. 05 Prove that efficiency will be maximum at $\alpha=45^{\circ}-\Phi / 2$ with $\eta_{\max }=(1-\sin \Phi) /(1+\sin \Phi)$.

OR
Q-2 (a) Write the different application of optimizations. 04
(b) Find the extreme points of the function 05
$f(x, y)=x^{3}+3 x y^{2}-15 x^{2}-15 y^{2}+72 x$
(c) Define a saddle point and Find the conditions that the quadratic $a x^{2}+2 h x y+b y^{2}+2 f x \quad 05$ $+2 g y+c$ may be concave or convex.

Q-3 (a) Minimize $f\left(x_{1}, x_{2}\right)=\left(x_{1}-3\right)^{2}+\left(x_{2}-8\right)^{2}$ subjected to: - $\mathrm{x}_{1}{ }^{2}+\mathrm{x}_{2} \leq 2,3 \mathrm{x}_{1}+\mathrm{x}_{2} \leq 12$ using by07 using Kuhn-Tucker conditions
(b) Explain step wise procedure for the Fibonacci method.

OR

Q-3 (a) Find the dimensions of a box of largest volume that can be inscribed in a sphere of unit 07 radius is $x^{2}+y^{2}+z^{2}=1$ and volume $f(x, y, z)=8 x y z$.Use Lagrange's Multipliers Method.
(b) Using golden section method find the point of minima of function $\mathrm{f}(x)=x^{2}-2.6 x+2, \quad 07$ $-2 \leq x \leq 3$. Chose $\delta=0.01, l=0.2$

Section -II

Q-4 Attempt the following.

1. Define golden ratio. 01
2. Define Stochastic programming 02
3. How genetic algorithm is useful for the optimization of a function? 02
4. Define experiment, Interval of uncertainty and unimodal function. 02

Q-5 (a) Find the value of x and y which minimize $f(x, y)=2 x^{-1} y^{-1}+(3 / 2) y^{-2}+2 x y^{2}$ by 05 using Geometric Programming Technique.
(b) Design tensile rod of the length $\mathrm{L}=300 \mathrm{~mm}$ to carry a tensile load of 7.5 kN for 05 minimum cost, out the following materials: Consider FOS=4.

Material	Mass Density $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$	Material Cost $(\mathrm{Rs} / \mathrm{kg})$	Yield strength (MPa)
30 C 8 Steel	7800	26	400
40 Cr1 steel	7680	30	520
Titanium Alloy	4800	560	90

(c) Explain the following terms associated with GA: Reproduction, crossover and mutation.

OR

Q-5 (a) Minimize $f(x)=0.25 x^{4}-x^{2}-5 x+1$ in the interval $0 \leq x \leq 3$ by using Newton- 04 Rapson method. Take $\epsilon=\delta=0.01$.
(b) Minimize: $\mathrm{f}(\mathrm{x})=\left(\mathrm{x}_{1}+2\right)^{3}+3 \mathrm{x}_{2}+1$ subject to $\mathrm{x}_{1} \geq 2, \mathrm{x}_{2} \geq 0$ by using interior 05 penalty method.
(c) What is the significance of gradient of a objective function and constraints? State 05 the properties of gradient vector.

Q-6 (a) Minimize: $\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=\mathrm{x}_{1}^{2}+2 \mathrm{x}_{2}^{2}-4 \mathrm{x}_{1}-2 \mathrm{x}_{1} \mathrm{x}_{2}$ starting with $(1,1)^{T}$, using conjugate 07 gradient method.
(b) Minimize $f(x)=x_{1}{ }^{2}+3 x_{2}{ }^{2}-2 x_{1} x_{2}+4 x_{2}+5$ using Steepest Decent Method starting 07 from the point $\mathrm{x}_{1}(4.2,-2.0)$, Take $\epsilon=0.01$ and $\mathrm{M}=100$.

OR
Q-6 (a) Using quadric interpolation method find minimum $f(x)=x^{3}-3 x+2$ in the interval $0 \leq \mathrm{x} \leq 3$, Take $\epsilon=0.1$
(b) Minimize: $\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=\mathrm{x}_{1}-\mathrm{x}_{2}+2 \mathrm{x}_{1}{ }^{2}+2 \mathrm{x}_{1} \mathrm{x}_{2}+\mathrm{x}_{2}{ }^{2}$ starting with $(0,0)^{T}$, using powell method.

