Enrolment No.: _____

C U SHAH UNIVERSITY

Faculty of Technology and Engineering

M.TECH. MECH.(CAD/CAM) SEM.-II UNIVERSITY EXAM MAY 2015

Subject Code: 5TE02AOT1Subject Name: ADVANCED OPTIMIZATON TECHNIQUESTime: 3 hrsTotal Marks: 70Instructions:

- 1. Make suitable assumptions whenever necessary.
- 2. Figures to the right indicate full marks.
- 3. Question one & four is compulsory.

Section -I

Q-1 Attempt the following.

Q-2

- 1. What is Engineering optimization? 01 2. What is the difference between design variables and preassigned parameters? 02 Find the point of extrema of the function $f(x,y) = x^2 - y^2$ 02 3. Differentiate between: Posynomial and Polynomial 4. 02 State the necessary and sufficient condition for the minimum of a convex 04 (a) programming problem with inequality constraints. What it its significance?
 - (b) Determine the maximum and minimum values of the function $f(x) = 8x^5 15x^4 + 10x$ 05
 - (c) The efficiency of a screw jack is given by $\eta = \tan\alpha/\tan(\alpha+\Phi)$, where Φ is a constant. 05 Prove that efficiency will be maximum at $\alpha = 45^{\circ} \Phi/2$ with $\eta_{max} = (1-\sin\Phi)/(1+\sin\Phi)$.

OR

Q-2 (a) Write the different application of optimizations. (b) Find the extreme points of the function $f(x, y) = x^3 + 3xy^2 - 15x^2 - 15y^2 + 72x$ (c) Define a saddle point and Find the conditions that the quadratic $ax^2 + 2hxy + by^2 + 2fx$ 05

(c) Define a saddle point and Find the conditions that the quadratic $ax^2 + 2hxy + by^2 + 2fx = 05 + 2gy + c$ may be concave or convex.

- Q-3 (a) Minimize $f(x_1, x_2) = (x_1-3)^2 + (x_2-8)^2$ subjected to: $-x_1^2 + x_2 \le 2$, $3x_1 + x_2 \le 12$ using by 07 using Kuhn-Tucker conditions
 - (b) Explain step wise procedure for the Fibonacci method.

OR

- Q-3 (a) Find the dimensions of a box of largest volume that can be inscribed in a sphere of unit 07 radius is $x^2+y^2+z^2=1$ and volume f(x,y,z) =8xyz. Use Lagrange's Multipliers Method.
 - (b) Using golden section method find the point of minima of function $f(x) = x^2 2.6x + 2$, 07 $-2 \le x \le 3$.Chose $\delta = 0.01$, l = 0.2

07

Section -II

Q-4	Attempt the following.			
	1.	Define golden ratio.		
	2.	Define Stochastic programming		
	3.	How genetic algorithm is useful for the optimization of a function?		

- How genetic algorithm is useful for the optimization of a function?
 Define experiment, Interval of uncertainty and unimodal function.
- Q-5 (a) Find the value of x and y which minimize $f(x,y) = 2x^{-1}y^{-1} + (3/2)y^{-2} + 2xy^2$ by 05 using Geometric Programming Technique.
 - (b) Design tensile rod of the length L=300 mm to carry a tensile load of 7.5 kN for 05 minimum cost, out the following materials: Consider FOS=4.

	U		
Material	Mass Density	Material Cost	Yield strength
	(kg/m^3)	(Rs/kg)	(MPa)
30 C 8 Steel	7800	26	400
40 Cr1 steel	7680	30	520
Titanium Alloy	4800	560	90

(c) Explain the following terms associated with GA: Reproduction, crossover and 05 mutation.

OR

- Q-5 (a) Minimize $f(x) = 0.25x^4 x^2 5x + 1$ in the interval $0 \le x \le 3$ by using Newton- 04 Rapson method. Take $\epsilon = \delta = 0.01$.
 - (b) Minimize: $f(x) = (x_1+2)^3 + 3x_2 + 1$ subject to $x_1 \ge 2$, $x_2 \ge 0$ by using interior 05 penalty method.
 - (c) What is the significance of gradient of a objective function and constraints? State 05 the properties of gradient vector.
- Q-6 (a) Minimize: $f(x_1, x_2) = x_1^2 + 2x_2^2 4x_1 2x_1x_2$ starting with $(1,1)^T$, using conjugate 07 gradient method.
 - (b) Minimize $f(x) = x_1^2 + 3x_2^2 2x_1x_2 + 4x_2 + 5$ using Steepest Decent Method starting 07 from the point x_1 (4.2, -2.0), Take $\epsilon = 0.01$ and M=100.

OR

- Q-6 (a) Using quadric interpolation method find minimum $f(x) = x^3-3x+2$ in the interval 07 $0 \le x \le 3$, Take $\varepsilon = 0.1$
 - (b) Minimize: $f(x_1, x_2) = x_1 x_2 + 2x_1^2 + 2x_1x_2 + x_2^2$ starting with $(0,0)^T$, using powell 07 method.

01 02

02

02